metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Manish Chandra,^a D. Shankar Pandey,^a M. Carmen Puerta^b and Pedro Valerga^b*

^aChemistry Department, APS University, Rewa 486 003, India, and ^bDepartamento de Ciencia de Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain

Correspondence e-mail: pedro.valerga@uca.es

Key indicators

Single-crystal X-ray study T = 293 K Mean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.033 wR factor = 0.090 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A *p*-cymene-ruthenium(II)–DMSO complex, $[(\eta^{6}-C_{10}H_{14})RuCl_{2}(DMSO)]$

The crystal structure of the neutral Ru^{II} complex [RuCl₂(η^6 - $C_{10}H_{14}$ ($C_{2}H_{6}OS$)] is reported. The overall coordination geometry about the ruthenium centre is best described as a typical 'piano stool'. In the p-cymene ligand, the six C atoms of the arene ring are in a planar configuration, as expected.

Received 4 December 2001 Accepted 10 December 2001 Online 14 December 2001

Comment

The homochiral sulfoxides have received considerable attention recently owing to their prominent role as intermediates in enantioselective synthesis and their potential use as precursors (Schenk et al., 1997; Otto et al., 2001). Because of our continuing interest in the area of arene ruthenium chemistry (Singh *et al.*, 2000), we reacted $[\{(\eta^{6}-C_{10}H_{14})RuCl_{2}\}_{2}]$ with 4-cyanophenyl imidazole, which contained dimethylsulfoxide as solvate. Surprisingly, we isolated the title complex, $[(\eta^6 -$ C10H14)RuCl2(DMSO)], (I), instead of the expected areneruthenium-organonitrile complex.

The pertinent bond lengths and bond angles may be compared with the closely related 1,4,9,10-tetrahydroanthracene ruthenium complex $[(\eta^6-C_{14}H_{14})RuCl_2(DMSO)]$ (Beasley et al., 1993). The title compound adopts a typical piano-stool geometry (a description commonly used for halfsandwich compounds) with a pseudo-tetrahedral arrangement of the *p*-cymene, the two chloride ligands, and the S atom of the coordinated DMSO ligand around the ruthenium metal centre. This is a similar arrangement to that of $[(\eta^6 C_{10}H_{14}$)RuCl₂(MePPh₂)], [(η^{6} - $C_{10}H_{14}$)RuCl₂(pz)₂]PF₆ and the DMSO complex $[(\eta^6-C_{14}H_{14})RuCl_2(DMSO)]$ η^{6} -arene (Bennett et al., 1972; Tocher et al., 1983; Beasley et al., 1993). The six-membered ring of the *p*-cymene is planar, with a maximum deviation of 0.013 (3) Å (C4) and an overall r.m.s. deviation of 0.008 Å. The C–C bond lengths within the *p*-cymene ring are similar, apart from a shortening of the C2-C3 bond. The Ru-C distances are almost equal, with an average of 2.199 (11) Å. The distance between the centroid of the *p*-cymene ring and ruthenium is 1.683(3) Å, which is very close to that reported in other Ru^{II} arene complexes (Watkins

Figure 1

The structure of $[(\eta^6-C_{10}H_{14})RuCl_2(DMSO)]$ showing 50% probability displacement ellipsoids.

& Fronczek, 1982; McCormick *et al.*, 1993; Gupta *et al.*, 1998). The Ru–Cl1 and Ru–Cl2 bond lengths are similar to those in other Ru^{II} complexes (Bruce *et al.*, 1981). The DMSO ligand is bonded to ruthenium *via* the S atom, resulting in a roughly tetrahedral arrangement around sulfur. The Ru–S distance is comparable to those observed in the η^6 -arene dimethyl sulfoxide complex [(η^6 –C₁₄H₁₄)RuCl₂(DMSO)] (Beasley *et al.*, 1993) and the Ru^{II} complex [RuCl₂(DMSO)₄] (Mercer & Trotter, 1975).

Experimental

The complex $[(\eta^6-C_{10}H_{14})RuCl_2(DMSO)]$ was prepared in a 68% yield by reaction of $[\{(\eta^6-C_{10}H_{14})RuCl_2\}_2]$ (0.612 g, 1 mmol) in dichloromethane (25 ml) with 4-cyanophenyl imidazole (0.338 g, 2 mmol) which was previously isolated from dimethyl sulfoxide and therefore contained DMSO as solvate. Orange–red crystals suitable for single-crystal analysis were obtained by slow diffusion of petroleum ether (b.p. 333–353 K) into a solution of the complex in dichloromethane.

Crystal data

$[RuCl_2(C_{10}H_{14})(C_2H_6OS)]$	Z = 2	
$M_r = 384.31$	$D_x = 1.692 \text{ Mg m}^{-3}$	
Triclinic, P1	Mo $K\alpha$ radiation	
a = 7.8522 (16) Å	Cell parameters from 25	
b = 9.4124(9)Å	reflections	
c = 10.9151 (17) Å	$\theta = 5.2 - 12.1^{\circ}$	
$\alpha = 106.850 (11)^{\circ}$	$\mu = 1.51 \text{ mm}^{-1}$	
$\beta = 94.395 \ (15)^{\circ}$	T = 293 (2) K	
$\gamma = 99.697 \ (13)^{\circ}$	Needle, brown	
$V = 754.3 (2) \text{ Å}^3$	$0.4\times0.1\times0.1$ mm	
Data collection		
Enraf–Nonius CAD-4	2373 reflections with $I > 2\sigma(I)$	
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$	
$\omega/2\theta$ scans	$h = -9 \rightarrow 9$	
Absorption correction: ψ scan	$k = 0 \rightarrow 11$	
(North et al., 1968)	$l = -12 \rightarrow 12$	
$T_{\min} = 0.836, T_{\max} = 0.860$	3 standard reflections	
2632 measured reflections	every 100 reflections	
2632 independent reflections	intensity decay: none	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $\nu R(F^2) = 0.090$ S = 1.07 2632 reflections	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.26 \text{ e } \text{Å}^{-3}$
2632 reflections	$\Delta \rho_{\rm max} = 1.26 \ {\rm e} \ {\rm \AA}^{-3}$
54 parameters	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ru1-Cl1	2.4111 (10)	Ru1-C4	2.205 (4)
Ru1-Cl2	2.4045 (10)	Ru1-C5	2.192 (3)
Ru1-S1	2.3400 (10)	Ru1-C6	2.181 (3)
Ru1-C1	2.201 (3)	S1-O1	1.477 (3)
Ru1-C2	2.207 (4)	S1-C11	1.774 (4)
Ru1-C3	2.209 (3)	S1-C12	1.784 (4)
Cl1-Ru1-Cl2	88.05 (4)	C12-S1-Ru1	109.49 (16)
S1-Ru1-Cl1	86.28 (4)	O1-S1-C11	108.2 (2)
S1-Ru1-Cl2	86.74 (4)	O1-S1-C12	107.5 (2)
O1-S1-Ru1	115.71 (13)	C11-S1-C12	99.5 (2)
C11-S1-Ru1	115.07 (15)		

The highest residual peak lies 0.919 Å from Ru1. All H atoms were placed in calculated positions and refined with a riding model.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *maXus* (Mackay *et al.*, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

Support of this work by the Council of Scientific and Industrial Research [HRDG, 01(1587)/99/EMR-II] is grate-fully acknowledged.

References

- Beasley, T. J., Brost, R. D., Chu, C. K., Grundy, S. L. & Stobart, S. R. (1993). Organometallics, 12, 4599–4606.
- Bennett, M. A., Robertson, G. B. & Smith, A. K. (1972). *J. Organomet. Chem.* **41**, C41–43.
- Bruce, M. I., Wong, F. S., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 1398–1405.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gupta, D. K., Sahay, A. N., Pandey, D. S., Jha, N. K., Sharma, P., Espinosa, G., Cabrera, A. Puerta, M. C. & Valerga. P. (1998). J. Organomet. Chem. 568, 13–20.
- Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stuart, N. & Shankland, K. (1998). *maXus*. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.
- McCormick, F. B., Cox, D. D. & Gleason, W. B. (1993). Organometallics, 12, 610–612.
- Mercer, A. & Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2480-2483.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Otto, M., Boone, B. J., Arif, A. M. & Gladysz, J. A. (2001). J. Chem. Soc. Dalton Trans. pp. 1218–1229.
- Schenk, W. A., Frisch, J., Durr, M., Burzlaff, N., Stalke, D., Fleischer, R., Adam, W., Prechtl, F. & Smerz, A. K. (1997). *Inorg. Chem.* 36, 2372–2378.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Singh, A., Sahay, A. N., Pandey, D. S., Puerta, M. C. & Valerga, P. (2000). J. Organomet. Chem. 605, 74–81, and references therein.
- Tocher, D. A., Gould, R. O., Stephenson, T. A., Bennett, M. A., Ennett, J. P., Matheson, T. W., Sawyer, L. & Shah, V. K. (1983). J. Chem. Soc. Dalton Trans. pp. 1671–1673.
- Watkins, S. F. & Fronczek, F. R. (1982). Acta Cryst. B38, 270-271.